Abstract. Following Perelman's solution to the Geometrisation Conjecture, a 'generic' closed 3-manifold is known to admit a hyperbolic structure. However, our understanding of closed hyperbolic 3-manifolds is far from complete. In particular, the notorious Virtually Haken Conjecture remains unresolved. This proposes that every closed hyperbolic 3-manifold has a finite cover that contains a closed embedded orientable π1-injective surface with positive genus.I will give a survey on the progress towards this conjecture and its variants. Along the way, I will address other interesting questions, including: What are the main types of finite covering space of a hyperbolic 3-manifold? How many are there, as a function of the covering degree? What geometric, topological and algebraic properties do they have? I will show how an understanding of various geometric and topological invariants (such as the first eigenvalue of the Laplacian, the rank of mod p homology and the Heegaard genus) can be used to deduce the existence of π1-injective surfaces, and more.