An example is given of an infinite cyclic extension of a free group of finite rank in which not every finitely generated subgroup is finitely separable. This answers negatively the question of Peter Scott as to whether in all finitely generated 3-manifold groups the finitely generated subgroups are finitely separable. In the positive direction it is shown that in knot groups and one-relator groups with centre, the finitely generated normal subgroups are finitely separable.
We investigate the structure of groups satisfying a positi¨e law, that is, an identity of the form u '¨, where u and¨are positive words. The main question here is whether all such groups are nilpotent-by-finite exponent. We answer this question affirmatively for a large class C C of groups including soluble and residually finite groups, showing that moreover the nilpotency class and the finite exponent in question are bounded solely in terms of the length of the positive law. It follows, in particular, that if a variety of groups is locally nilpotent-by-finite, then it must in fact be contained in the product of a nilpotent variety by a locally finite variety of finite exponent. We deduce various other corollaries, for instance, that a torsionfree, residually finite, n-Engel group is nilpotent of class bounded in terms of n. We also consider incidentally a question of Bergman as to whether a positive law holding in a generating subsemigroup of a group must in fact be a law in the whole group, showing that it has an affirmative answer for soluble groups. ᮊ 1997 Academic Press 510
As a step towards characterizing ID-groups (i.e., groups G such that, for every ring R without zero-divisors, the group ring RG has no zero-divisors), Rudin and Schneider defined Ω-groups, a possibly wider class than that of right-orderable groups, and proved that if every non-trivial finitely generated subgroup of a group G has a non-trivial H-group as an epimorphic image, then G is an ID-group. We prove that such groups are even Ω-groups and obtain the analogous result for right-orderable groups.
This paper is concerned with the question of whether n-Engel groups are locally nilpotent. Although this seems unlikely in general, it is shown here that it is the case for the groups in a large class <& including all residually soluble and residually finite groups (in fact all groups considered in traditional textbooks on group theory). This follows from the main result that there exist integers c(n), e(n) depending only on n, such that every finitely generated n-Engel group in the class <€ is both finite-of-exponent-*?(n)-bynilpotent-of-class< c(n) and nilpotent-of-class< c(«)-by-finite-of-exponent-e(n). Crucial in the proof is the fact that a finitely generated Engel group has finitely generated commutator subgroup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.