2016
DOI: 10.1016/j.datak.2016.02.002
|View full text |Cite
|
Sign up to set email alerts
|

A novel and powerful hybrid classifier method: Development and testing of heuristic k-nn algorithm with fuzzy distance metric

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 21 publications
(7 citation statements)
references
References 31 publications
0
5
0
2
Order By: Relevance
“…The method of the nearest neighbor has variations defined by the number of neighbors considered, for this reason, the number of neighbors is an evaluation parameter discussed in this paper. In the k-NN model, the k objects of the training set closest to x t are evaluated [37]. When k is greater than one, the neighboring k is obtained for each test point.…”
Section: Nearest Neighbors Methodsmentioning
confidence: 99%
“…The method of the nearest neighbor has variations defined by the number of neighbors considered, for this reason, the number of neighbors is an evaluation parameter discussed in this paper. In the k-NN model, the k objects of the training set closest to x t are evaluated [37]. When k is greater than one, the neighboring k is obtained for each test point.…”
Section: Nearest Neighbors Methodsmentioning
confidence: 99%
“…Bunun yanında bulanık uzaklık metriği klasik metriklere kıyasla çok daha etkili sonuçlar vermektedir. Bulanık uzaklık metriğinin ortalama olarak k-nn algoritmasının sınıflandırma performansını klasik metriklere göre %10'dan fazla iyileştirdiği bilinmektedir (Kahraman, 2016;Kahraman vd., 2013;Yilmaz vd., 2018). Algoritma 1. k-nn Algoritmasının Sözde Kodu (Kahraman vd., 2013) (Pseudo Code of the k-nn Algorithm)…”
Section: K-en Yakın Komşu Algoritması (K-nearest Neigbour Algorithm)unclassified
“…MSA'lar sadece optimizasyon sürecinde arama algoritmaları olarak değil birçok çalışmada daha güçlü ve etkili melez yapay zekâ algoritmaları tasarlamak için de kullanılmaktadırlar. Bu amaçla tahmin (Kahraman vd., 2012), sınıflandırma (Kahraman, 2016;Kahraman vd., 2013;Yilmaz vd., 2018) ve kümeleme (Cerrada vd., 2019;Li vd., 2020;Yaday ve Prakash, 2020;Zhou vd., 2019;Aliarah vd., 2020) ve optimizasyon problemlerinin (Özkaraca ve Keçebaş., 2019;Özkaraca vd., 2018;Özkaraca vd. 2017) çözümlenmesi için geliştirilmiş MSA-tabanlı melez algoritmalar mevcuttur.…”
Section: Giriş (Introduction)unclassified
“…Accordingly, a chromosome representing a candidate for solution in the genetic algorithm has a structure consisting of eight genes, one for each dependent variable. Therefore, the mathematical expression of a population of solutions (population P consisting of m-number of solution candidates) to be created by the genetic algorithm for both cooling and heating load can then be represented as given in equation 1 [13,15]:…”
Section: Genetic K-nn Based Estimation and Weighting Modelmentioning
confidence: 99%
“…The estimation task is performed with k-nn [13], while the weighting task is performed with a genetic algorithm [14]. The weighting model represents the effect of the attributes of a problem on the target outputs with the optimal value in the range (0.1).…”
Section: Genetic K-nn Based Estimation and Weighting Modelmentioning
confidence: 99%