Electricity price forecasting plays a vital role in the financial markets. This paper proposes a self-adaptive, decomposed, heterogeneous, and ensemble learning model for short-term electricity price forecasting one, two, and three-months-ahead in the Brazilian market. Exogenous variables, such as supply, lagged prices and demand are considered as inputs signals of the forecasting model. Firstly, the coyote optimization algorithm is adopted to tune the hyperparameters of complementary ensemble empirical mode decomposition in the pre-processing phase. Next, three machine learning models, including extreme learning machine, gradient boosting machine, and support vector regression models, as well as Gaussian process, are designed with the intent of handling the components obtained through the signal decomposition approach with focus on time series forecasting. The individual forecasting models are directly integrated in order to obtain the final forecasting prices one to three-months-ahead. In this case, a grid of forecasting models is obtained. The best forecasting model is the one that has better generalization out-of-sample. The empirical results show the efficiency of the proposed model. Additionally, it can achieve forecasting errors lower than 4.2% in terms of symmetric mean absolute percentage error. The ranking of importance of the variables, from the smallest to the largest is, lagged prices, demand, and supply. This paper provided useful insights for multi-step-ahead forecasting in the electrical market, once the proposed model can enhance forecasting accuracy and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.