To improve the monitoring of the electrical power grid, it is necessary to evaluate the influence of contamination in relation to leakage current and its progression to a disruptive discharge. In this paper, insulators were tested in a saline chamber to simulate the increase of salt contamination on their surface. From the time series forecasting of the leakage current, it is possible to evaluate the development of the fault before a flashover occurs. In this paper, for a complete evaluation, the long short-term memory (LSTM), group method of data handling (GMDH), adaptive neuro-fuzzy inference system (ANFIS), bootstrap aggregation (bagging), sequential learning (boosting), random subspace, and stacked generalization (stacking) ensemble learning models are analyzed. From the results of the best structure of the models, the hyperparameters are evaluated and the wavelet transform is used to obtain an enhanced model. The contribution of this paper is related to the improvement of well-established models using the wavelet transform, thus obtaining hybrid models that can be used for several applications. The results showed that using the wavelet transform leads to an improvement in all the used models, especially the wavelet ANFIS model, which had a mean RMSE of 1.58 ×10−3, being the model that had the best result. Furthermore, the results for the standard deviation were 2.18 ×10−19, showing that the model is stable and robust for the application under study. Future work can be performed using other components of the distribution power grid susceptible to contamination because they are installed outdoors.
Interruptions in the supply of electricity cause numerous losses to consumers, whether residential or industrial and may result in fines being imposed on the regulatory agency’s concessionaire. In Brazil, the electrical transmission and distribution systems cover a large territorial area, and because they are usually outdoors, they are exposed to environmental variations. In this context, periodic inspections are carried out on the electrical networks, and ultrasound equipment is widely used, due to non-destructive analysis characteristics. Ultrasonic inspection allows the identification of defective insulators based on the signal interpreted by an operator. This task fundamentally depends on the operator’s experience in this interpretation. In this way, it is intended to test machine learning applications to interpret ultrasound signals obtained from electrical grid insulators, distribution, class 25 kV. Currently, research in the area uses several models of artificial intelligence for various types of evaluation. This paper studies Multilayer Perceptron networks’ application to the classification of the different conditions of ceramic insulators based on a restricted database of ultrasonic signals recorded in the laboratory.
Disruptive failures threaten the reliability of electric supply in power branches, often indicated by the rise of leakage current in distribution insulators. This paper presents a novel, hybrid method for fault prediction based on the time series of the leakage current of contaminated insulators. In a controlled high-voltage laboratory simulation, 15 kV-class insulators from an electrical power distribution network were exposed to increasing contamination in a salt chamber. The leakage current was recorded over 28 h of effective exposure, culminating in a flashover in all considered insulators. This flashover event served as the prediction mark that this paper proposes to evaluate. The proposed method applies the Christiano–Fitzgerald random walk (CFRW) filter for trend decomposition and the group data-handling (GMDH) method for time series prediction. The CFRW filter, with its versatility, proved to be more effective than the seasonal decomposition using moving averages in reducing non-linearities. The CFRW-GMDH method, with a root-mean-squared error of 3.44×10−12, outperformed both the standard GMDH and long short-term memory models in fault prediction. This superior performance suggested that the CFRW-GMDH method is a promising tool for predicting faults in power grid insulators based on leakage current data. This approach can provide power utilities with a reliable tool for monitoring insulator health and predicting failures, thereby enhancing the reliability of the power supply.
To improve the monitoring of the electrical power grid it is necessary to evaluate the influence of contamination in relation to leakage current and its progression to a disruptive discharge. In this paper, insulators were tested in a saline chamber to simulate the increase of salt contamination on their surface, and to evaluate the supportability of these components. From the time series forecasting of the leakage current, it is possible to evaluate the development of the fault before a flashover occurs. Choosing which method to use is always a difficult task since some models may have higher computational effort. In this paper, for a complete evaluation, the long short-term memory (LSTM), group method of data handling (GMDH), adaptive neuro-fuzzy inference system (ANFIS), bootstrap aggregation (bagging), sequential learning (boosting), random subspace, and stacked generalization (stacking) ensemble learning models are analyzed. A review and comparison of these well-established methods for time series forecasting is performed. From the results of the best structure of the model, the hyperparameters are evaluated and the Wavelet transform is used to obtain an enhanced model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.