Crude Monte Carlo simulation (MCS) is the most robust and easily implemented method for performing time-variant reliability analysis (TRA). However, it is inefficient, especially for high reliability problems. This paper aims to present a random simulation method called the multilevel Monte Carlo (MLMC) method for TRA to enhance the computational efficiency of crude MCS while maintaining its accuracy and robustness. The proposed method first discretizes the time interval of interest using a geometric sequence of different timesteps. The cumulative probability of failure associated with the finest level can then be estimated by computing corrections using all levels. To assess the cumulative probability of failure in a way that minimizes the overall computational complexity, the number of random samples at each level is optimized. Moreover, the correction associated with each level is independently computed using crude MCS. Thereby, the proposed method can achieve the accuracy associated with the finest level at a much lower computational cost than that of crude MCS, and retains the robustness of crude MCS with respect to nonlinearity and dimensions. The effectiveness of the proposed method is validated by numerical examples.