In dentistry, various animal models are used to evaluate adhesive systems, dental caries and periodontal diseases. Metalloproteinases (MMPs) are enzymes that degrade collagen in the dentin matrix and are categorized in over 20 different classes. Collagenases and gelatinases are intrinsic constituents of the human dentin organic matrix fibrillar network and are the most abundant MMPs in this tissue. Understanding such enzymes’ action on dentin is important in the development of approaches that could reduce dentin degradation and provide restorative procedures with extended longevity. This in silico study is based on dentistry’s most used animal models and intends to search for the most suitable, evolutionarily close to Homo sapiens. We were able to retrieve 176,077 mammalian MMP sequences from the UniProt database. These sequences were manually curated through a three-step process. After such, the remaining 3178 sequences were aligned in a multifasta file and phylogenetically reconstructed using the maximum likelihood method. Our study inferred that the animal models most evolutionarily related to Homo sapiens were Orcytolagus cuniculus (MMP-1 and MMP-8), Canis lupus (MMP-13), Rattus norvegicus (MMP-2) and Orcytolagus cuniculus (MMP-9). Further research will be needed for the biological validation of our findings.