ReuseThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/
AbstractThe present paper addresses the problem of designing aluminium friction stir (FS) welded joints against multiaxial fatigue. After developing a bespoke FS welding technology suitable for joining aluminium tubes, some one hundred welded tubular specimens of Al 6082-T6 were tested under pure axial, pure torsional and biaxial tension-torsion loading.The influence was explored of two independent variables, namely the proportional or nonproportional nature of the biaxial loading and the effect of axial and torsional non-zero mean stresses. The experimental results were re-analysed using the Modified Wöhler Curve Method (MWCM), with this bi-parametrical critical plane approach being applied in terms of nominal stresses, notch stresses, and also the Point Method. The validation exercise carried out using these experimental data demonstrated that the MWCM is applicable to prediction of the fatigue lives for these FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands. The approach proposed in the present paper offers, for the first time, a complete solution to the problem of designing tubular FS welded joints against multiaxial fatigue loading.