Compact autonomous power sources are one of the prerequisites for the development of wireless sensor networks. In this work vibration energy harvesting via piezoelectric resonant bimorph beams is studied. The available analytical approaches for the modeling of the coupled electromechanical behavior are critically evaluated and compared with a finite element (FEM) numerical model. The latter is applied to analyze thoroughly the stress and strain states, as well as to evaluate the resulting voltage and charge distributions in the piezoelectric layers. The aim of increasing the specific power generated per unit of scavenger volume is pursued by optimizing the shape of the scavengers. Two optimized trapezoidal configurations are hence identified and analyzed. An experimental set-up for the validation of the proposed numerical model and of the obtained optimized structures is developed. Results of a preliminary experimental assessment, confirming the improved performances of optimized scavengers, are finally given
This paper presents a preliminary investigation on energy harvesting from human walking via piezoelectric vibrating cantilevers. Heel accelerations during human gait are established by correlating data gathered from the literature with direct experimental measurements. All the observed relevant features are synthesized in a typical (standard) acceleration signal, used in subsequent numerical simulations. The transient electromechanical response and the harvested power of a shoe-mounted bimorph cantilever excited by the standard acceleration signal is computed by numerical simulations and compared with measurements on a real prototype. A sensitivity analysis is finally developed to estimate the mean harvested power for a wide range of scavenger configurations. Acceptability criteria based on imposed geometrical constraints and resistance strength limits (e.g. fatigue limit) are also established. This analysis allows a quick preliminary screening of harvesting performance of different scavenger configurations.
A B S T R A C T This paper summarizes an attempt at proposing a new engineering method suitable for estimating the fatigue lifetime of steel-and aluminium-welded connections subjected to variable amplitude multiaxial fatigue loading. In particular, the proposed approach is based on the use of the so-called Modified Wöhler Curve Method (MWCM), i.e. a bi-parametrical critical plane approach, whose accuracy has been checked so far solely in addressing the constant amplitude multiaxial fatigue problem. In order to extend the use of our criterion to variable amplitude situations, the critical plane is suggested here as being determined by taking full advantage of the maximum variance concept, that is, such a plane is assumed to be the one containing the direction along which the variance of the resolved shear stress reaches its maximum value. The main advantage of such a strategy is that the cycle counting can directly be performed by considering the shear stress resolved along the maximum variance direction: by so doing, the problem is greatly simplified, allowing those well-established cycle counting methods specifically devised to address the uniaxial variable amplitude problem to be extended to those situations involving multiaxial fatigue loading. The validity of the proposed methodology was checked by using two different datasets taken from the literature and generated by testing both steel and aluminium tube-to-plate welded connections subjected to in-phase and 90 • out-ofphase variable amplitude bending and torsion. This new fatigue life assessment technique was seen to be highly accurate allowing the estimates to fall within the calibration scatter bands not only when the constants in the governing equations were calculated by using the experimental uniaxial and torsional fully reversed fatigue curves, but also when they were determined by using the reference curves supplied, for the investigated geometry, by the available standard codes. These results seem to strongly support the idea that, thanks to its peculiar features, our method can be considered as an effective engineering approach capable of performing multiaxial fatigue assessment under variable amplitude loading which fully complies with the recommendations of the available standard codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.