Despite their advantages, percutaneous coronary interventional procedures are less effective in diabetic patients. Changes in the mechanical properties of vascular walls secondary to long-term hyperglycemia as well as other factors such as age may influence coronary distensibility. This investigation is aimed at deciphering the extent of these effects on distensibility of postmortem human coronary arteries in a controlled manner. Excised human left anterior descending (LAD) coronary arteries were obtained within 24 h postmortem. With the use of intravascular ultrasound, vascular deformation was analyzed at midregions of 51 moderate lesions. Intraluminal pressure was systematically altered using a computerized pressure pump system and monitored by a pressure-sensing guidewire. Distensibility, a normalized compliance term, was defined as the change in lumen area normalized by the initial reference area over a given pressure interval. With the use of multivariate analysis and repeated-measures ANOVA, coronary distensibility was independently influenced by hyperglycemia and age (P < 0.05) through the entire pressure range. Within physiological pressure range, distensibility was significantly reduced with age in nonhyperglycemic coronary specimens (10.55 +/- 4.41 vs. 6.99 +/- 2.45, x10(3) kPa(-1), P = 0.01), whereas the hyperglycemic vessels were stiff even in the younger group (7.90 +/- 5.82 vs. 7.20 +/- 3.36, x10(3) kPa(-1), P = 0.79). Similar results were observed with stiffness index and elastic modulus of the arteries. Hyperglycemia and age independently influenced the distensibility of moderately atherosclerotic LAD coronary arteries. The stiffening with age was overshadowed in the hyperglycemic group by as-yet-undetermined factors.