Electrochemical biosensing systems for toxic substances were developed on the basis of motility and negative gravitaxis of the unicellular flagellate Chlamydomonas reinhardtii. Changes in the flagellar movement of the flagellates in response to three toxic chemicals, toluene, copper(II) sulfate, and nickel(II) chloride, were monitored as changes in the redox currents for a coexisiting redox marker. The gravitaxis-based flagellate biosensing system was more sensitive to toluene than the motility-based system. A thin-layer flagellate biosensor was also developed. In comparison with the conventional algal biosensors monitoring the photosynthetic activity, the gravitaxis-based thin-layer sensor was more sensitive by more than 1 order of magnitude.