The nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) family of transcription factors plays an instrumental role in human immunity and lymphoid organ development. Inherited defects affecting these factors or their regulation are associated with increased susceptibility to infections, as well as non-immune abnormalities. Hematopoietic stem cell transplantations (HSCT) have been shown to correct the immune abnormalities in a few patients with NFκB pathway defects. Here we review the pre-HSCT characteristics, as well as the HSCT and outcome of 35 patients who received HSCT for NFκB defects. Twenty-three patients (65.7%) were reported to have survived HSCT. Survival was higher among patients with X-linked ectodermal dysplasia and immunodeficiency (XL-EDA-ID), and those with CARD11-BCL10-MALT1 (CBM) complex defects, in comparison to patients with autosomal dominant ectodermal dysplasia and immunodeficiency (AD-EDA-ID) and IKBKB defects. Survival following myeloablative conditioning was similar to that after reduced intensity conditioning, although donor cells engraftment and immune reconstitution after HSCT was not complete in some patients. The effects of HSCT on organ dysfunction associated with NFκB defects, such as liver toxicity or bowel inflammation, are still not clear. Earlier identification and transplantation of affected patients, as well as better understanding of the pathogenesis and complications of the different NFκB mutations, might improve outcome of HSCT for specific patient populations.
Statement of novelty:This review highlights the current indications, regimens, and outcome of HSCT for inherited defects involving various components of the canonical and non-canonical NFκB pathways.