Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage.
Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases. However, the mechanisms regulating NET formation, particularly during chronic inflammation, are poorly understood. Here we show that the G protein-coupled receptor (GPCR) CXCR2 mediates NET formation. Downstream analyses showed that CXCR2-mediated NET formation was independent of NADPH oxidase and involved Src family kinases. We show the pathophysiological relevance of this mechanism in cystic fibrosis lung disease, characterized by chronic neutrophilic inflammation. We found abundant NETs in airway fluids of individuals with cystic fibrosis and mouse cystic fibrosis lung disease, and NET amounts correlated with impaired obstructive lung function. Pulmonary blockade of CXCR2 by intra-airway delivery of small-molecule antagonists inhibited NET formation and improved lung function in vivo without affecting neutrophil recruitment, proteolytic activity or antibacterial host defense. These studies establish CXCR2 as a receptor mediating NADPH oxidase-independent NET formation and provide evidence that this GPCR pathway is operative and druggable in cystic fibrosis lung disease.
Immune tolerance toward the semiallogeneic fetus plays a crucial role in the maintenance of pregnancy. Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterized by their ability to modulate T-cell responses. Recently, we showed that MDSCs accumulate in cord blood of healthy newborns, yet their role in materno-fetal tolerance remained elusive. In the present study, we demonstrate that MDSCs with a granulocytic phenotype (GR-MDSCs) are highly increased in the peripheral blood of healthy pregnant women during all stages of pregnancy compared with nonpregnant controls, whereas numbers of monocytic MDSCs were unchanged. GR-MDSCs expressed the effector enzymes arginase-I and iNOS, produced high amounts of ROS and efficiently suppressed T-cell proliferation. After parturition, GR-MDSCs decreased within a few days. In combination, our results show that GR-MDSCs expand in normal human pregnancy and may indicate a role for MDSCs in materno-fetal tolerance.Keywords: Myeloid-derived suppressor cells (MDSCs) r Reproductive immunology r T cells r Tolerance Additional supporting information may be found in the online version of this article at the publisher's web-site
SummaryNeonates show an impaired anti-microbial host defence, but the underlying immune mechanisms are not understood fully. Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell subset characterized by their capacity to suppress T cell immunity. In this study we demonstrate that a distinct MDSC subset with a neutrophilic/granulocytic phenotype (Gr-MDSCs) is highly increased in cord blood compared to peripheral blood of children and adults. Functionally, cord blood isolated Gr-MDSCs suppressed T cell proliferation efficiently as well as T helper type 1 (Th1), Th2 and Th17 cytokine secretion. Beyond T cells, cord blood Gr-MDSCs controlled natural killer (NK) cell cytotoxicity in a cell contact-dependent manner. These studies establish neutrophilic Gr-MDSCs as a novel immunosuppressive cell subset that controls innate (NK) and adaptive (T cell) immune responses in neonates. Increased MDSC activity in cord blood might serve as key fetomaternal immunosuppressive mechanism impairing neonatal host defence. Gr-MDSCs in cord blood might therefore represent a therapeutic target in neonatal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.