Immune tolerance toward the semiallogeneic fetus plays a crucial role in the maintenance of pregnancy. Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterized by their ability to modulate T-cell responses. Recently, we showed that MDSCs accumulate in cord blood of healthy newborns, yet their role in materno-fetal tolerance remained elusive. In the present study, we demonstrate that MDSCs with a granulocytic phenotype (GR-MDSCs) are highly increased in the peripheral blood of healthy pregnant women during all stages of pregnancy compared with nonpregnant controls, whereas numbers of monocytic MDSCs were unchanged. GR-MDSCs expressed the effector enzymes arginase-I and iNOS, produced high amounts of ROS and efficiently suppressed T-cell proliferation. After parturition, GR-MDSCs decreased within a few days. In combination, our results show that GR-MDSCs expand in normal human pregnancy and may indicate a role for MDSCs in materno-fetal tolerance.Keywords: Myeloid-derived suppressor cells (MDSCs) r Reproductive immunology r T cells r Tolerance Additional supporting information may be found in the online version of this article at the publisher's web-site
SummaryNeonates show an impaired anti-microbial host defence, but the underlying immune mechanisms are not understood fully. Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell subset characterized by their capacity to suppress T cell immunity. In this study we demonstrate that a distinct MDSC subset with a neutrophilic/granulocytic phenotype (Gr-MDSCs) is highly increased in cord blood compared to peripheral blood of children and adults. Functionally, cord blood isolated Gr-MDSCs suppressed T cell proliferation efficiently as well as T helper type 1 (Th1), Th2 and Th17 cytokine secretion. Beyond T cells, cord blood Gr-MDSCs controlled natural killer (NK) cell cytotoxicity in a cell contact-dependent manner. These studies establish neutrophilic Gr-MDSCs as a novel immunosuppressive cell subset that controls innate (NK) and adaptive (T cell) immune responses in neonates. Increased MDSC activity in cord blood might serve as key fetomaternal immunosuppressive mechanism impairing neonatal host defence. Gr-MDSCs in cord blood might therefore represent a therapeutic target in neonatal infections.
Preterm delivery is the leading cause of perinatal morbidity and mortality. Among the most important complications in preterm infants are peri- or postnatal infections. Myeloid-derived suppressor cells (MDSC) are myeloid cells with suppressive activity on other immune cells. Emerging evidence suggests that granulocytic MDSC (GR-MDSC) play a pivotal role in mediating maternal-fetal tolerance. The role of MDSC for postnatal immune-regulation in neonates is incompletely understood. Until the present time, nothing was known about expression of MDSC in preterm infants. In the present pilot study, we quantified GR-MDSC counts in cord blood and peripheral blood of preterm infants born between 23 + 0 and 36 + 6 weeks of gestation (WOG) during the first 3 months of life and analysed the effect of perinatal infections. We show that GR-MDSC are increased in cord blood independent of gestational age and remain elevated in peripheral blood of preterm infants during the neonatal period. After day 28 they drop to nearly adult levels. In case of perinatal or postnatal infection, GR-MDSC accumulate further and correlate with inflammatory markers C-reactive protein (CRP) and white blood cell counts (WBC). Our results point towards a role of GR-MDSC for immune-regulation in preterm infants and render them as a potential target for cell-based therapy of infections in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.