Sensor nodes equipped with various sensory devices can sense a wide range of information regarding human or things, thereby providing a foundation for Internet of Thing (IoT). Fast and energy-efficient data collection to the control center (CC) is of significance yet very challenging. To deal with this challenge, a low redundancy data collection (LRDC) scheme is proposed to reduce delay as well as energy consumption for monitoring network by using matrix completion technique. Due to the correlation of the location-dependent sensing data, some data without being collected can still be recovered by the matrix completion technology, thereby reducing the data amount for data collection and transmission, reducing the network energy consumption, and accelerating the process of data acquisition. Based on matrix completion technique, LRDC scheme can select only part of the nodes to sense data and transmit less data to CC. By doing so, the data collected by the network can be greatly reduced, which can effectively improve the network lifetime. In addition, LRDC scheme also proposes a method for quickly compensate sample data in cases of packet loss, whereby part of redundant data is sent in advance to the area closer to CC. If the data required for matrix completion is lost, these redundant data can be quickly obtained by CC, so the LRDC scheme has low delay characteristics. Simulation results demonstrate that LRDC scheme can achieve better performance than the traditional strategy, and it can reduce the maximum energy consumption of the network by 27.6-57.9% and reduce the delay by 0.7-17.9%.