Electromagnetic loop networks (EMLNs) are pervasive in power networks. Their major characteristic is parallel flow. EMLNs with substantial parallel flow are considered to have a parallel flow problem. There is currently a serious disagreement about whether EMLNs have a parallel flow problem, which has resulted in different configurations of national grids. Therefore, this paper proposes a general model of EMLNs and derives the parallel current function, which formulates parallel flow, from the network equations of both the high and low voltage sides of an EMLN. Accordingly, the high and low voltage sides of an EMLN are equivalent to two sets of parallel identical multi-transmission lines. Finally, this paper considers operating margins and derives the sufficient condition under which parallel flow can be ignored. The sufficient condition not only determines whether an EMLN has a parallel flow problem but also reveals simple approaches to visually diminishing parallel flow. If the EMLN satisfies the sufficient condition, parallel flow can be ignored; otherwise, the EMLN needs to operate in a restricted way or to adopt open loop planning.