In this paper, we study a versatile iterative framework for the reconstruction of uniform samples from nonuniform samples of bandlimited signals. Assuming the input signal is slightly oversampled, we first show that its uniform and nonuniform samples in the frequency band of interest can be expressed as a system of linear equations using fractional delay digital filters. Then we develop an iterative framework, which enables the development and convergence analysis of efficient iterative reconstruction algorithms. In particular, we study the Richardson iteration in detail to illustrate how the reconstruction problem can be solved iteratively, and show that the iterative method can be efficiently implemented using Farrow-based variable digital filters with few general-purpose multipliers. Under the proposed framework, we also present a completed and systematic convergence analysis to determine the convergence conditions. Simulation results show that the iterative method converges more rapidly and closer to the true solution (i.e. the uniform samples) than conventional iterative methods using truncation of sinc series.