A novel technique for despeckling the medical ultrasound images using lossy compression is presented. The logarithm of the input image is first transformed to the multiscale wavelet domain. It is then shown that the subband coefficients of the log-transformed ultrasound image can be successfully modeled using the generalized Laplacian distribution. Based on this modeling, a simple adaptation of the zero-zone and reconstruction levels of the uniform threshold quantizer is proposed in order to achieve simultaneous despeckling and quantization. This adaptation is based on: (1) an estimate of the corrupting speckle noise level in the image; (2) the estimated statistics of the noise-free subband coefficients; and (3) the required compression rate. The Laplacian distribution is considered as a special case of the generalized Laplacian distribution and its efficacy is demonstrated for the problem under consideration. Context-based classification is also applied to the noisy coefficients to enhance the performance of the subband coder. Simulation results using a contrast detail phantom image and several real ultrasound images are presented. To validate the performance of the proposed scheme, comparison with two two-stage schemes, wherein the speckled image is first filtered and then compressed using the state-of-the-art JPEG2000 encoder, is presented. Experimental results show that the proposed scheme works better, both in terms of the signal to noise ratio and the visual quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.