2023
DOI: 10.1016/j.ceramint.2023.06.020
|View full text |Cite
|
Sign up to set email alerts
|

A novel K3(Y0.88Yb0.10Er0.02)Si2O7 silicate phosphor for multi-mode thermometry of high sensitivity through up-conversion luminescence

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(2 citation statements)
references
References 44 publications
0
2
0
Order By: Relevance
“…Figure 9A–D demonstrates the optical temperature sensing performance of LuWO:0.19Er 3+ ,0.20Yb 3+ based on NTCELs. The FIR in NTCELs mode can be fitted based on the following polynomial equation 30,37,43 : FIRbadbreak=A3T3goodbreak+A2T2goodbreak+A1normalTgoodbreak+A0$$\begin{equation}FIR = {A}_3{T}^3 + {A}_2{T}^2 + {A}_1{\mathrm{T}} + {A}_0\end{equation}$$where A 3 , A 2 , A 1 , and A 0 are the fitting constants related to materials. Further derivation leads to the formulas for S A and S R as follows 37 : SAbadbreak=||dFIRdTgoodbreak=3A3T2goodbreak+2A2Tgoodbreak+A1$$\begin{equation}{{\mathrm{S}}}_A = \left| {\frac{{d\left( {FIR} \right)}}{{d{\mathrm{T}}}}} \right| = 3{A}_3{T}^2 + 2{A}_2T + {A}_1\end{equation}$$ SRbadbreak=||1FIRd()FIRdnormalTgoodbreak=1FIR()3A3T2goodbreak+2A2T+A1$$\begin{equation}{{\mathrm{S}}}_R = \left| {\frac{1}{{FIR}}\frac{{d\left( {FIR} \right)}}{{d{\mathrm{T}}}}} \right| = \frac{1}{{FIR}}\left( {3{A}_3{T}^2 + 2{A}_2T + {A}_1} \right)\end{equation}$$…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Figure 9A–D demonstrates the optical temperature sensing performance of LuWO:0.19Er 3+ ,0.20Yb 3+ based on NTCELs. The FIR in NTCELs mode can be fitted based on the following polynomial equation 30,37,43 : FIRbadbreak=A3T3goodbreak+A2T2goodbreak+A1normalTgoodbreak+A0$$\begin{equation}FIR = {A}_3{T}^3 + {A}_2{T}^2 + {A}_1{\mathrm{T}} + {A}_0\end{equation}$$where A 3 , A 2 , A 1 , and A 0 are the fitting constants related to materials. Further derivation leads to the formulas for S A and S R as follows 37 : SAbadbreak=||dFIRdTgoodbreak=3A3T2goodbreak+2A2Tgoodbreak+A1$$\begin{equation}{{\mathrm{S}}}_A = \left| {\frac{{d\left( {FIR} \right)}}{{d{\mathrm{T}}}}} \right| = 3{A}_3{T}^2 + 2{A}_2T + {A}_1\end{equation}$$ SRbadbreak=||1FIRd()FIRdnormalTgoodbreak=1FIR()3A3T2goodbreak+2A2T+A1$$\begin{equation}{{\mathrm{S}}}_R = \left| {\frac{1}{{FIR}}\frac{{d\left( {FIR} \right)}}{{d{\mathrm{T}}}}} \right| = \frac{1}{{FIR}}\left( {3{A}_3{T}^2 + 2{A}_2T + {A}_1} \right)\end{equation}$$…”
Section: Resultsmentioning
confidence: 99%
“…42 Figure 9A-D demonstrates the optical temperature sensing performance of LuWO:0.19Er 3+ ,0.20Yb 3+ based on NTCELs. The FIR in NTCELs mode can be fitted based on the following polynomial equation 30,37,43 : 𝐹𝐼𝑅 = 𝐴 3 𝑇 3 + 𝐴 2 𝑇 2 + 𝐴 1 T + 𝐴 0 (10) where A 3 , A 2 , A 1 , and A 0 are the fitting constants related to materials. Further derivation leads to the formulas for S A and S R as follows 37 :…”
Section: Multi-mode Temperature Sensingmentioning
confidence: 99%