A new method for the determination of cadherin 12 (CDH12)—an adhesive protein that has a significant impact on the development, growth, and movement of cancer cells—was developed and validated. The method is based on a biosensor using surface plasmon resonance imaging (SPRi) detection. A quartz crystal microbalance was used to analyze the characteristics of the formation of successive layers of the biosensor, from the linker monolayer to the final capture of CDH12 from solution. The association equilibrium constant (KA = 1.66 × 1011 dm3 mol−1) and the dissociation equilibrium constant (KD = 7.52 × 10−12 mol dm−3) of the anti-CDH12 antibody–CDH12 protein complex were determined. The determined analytical parameters, namely the values determining the accuracy, precision, and repeatability of the method, do not exceed the permissible 20% deviations specified by the aforementioned institutions. The proposed method is also selective with respect to possible potential interferents, occurring in up to 100-fold excess concentration relative to the CDH12 concentration. The determined Limit of Quantification (LOQ = 4.92 pg mL−1) indicates the possibility of performing quantitative analysis in human plasma or peritoneal fluid without the need to concentrate the samples; however, particular attention should be paid to their storage conditions, as the analyte does not exhibit high stability. The Passing–Bablok regression model revealed good agreement between the reference method and the SPRi biosensor, with ρSpearman values of 0.961 and 0.925.