A novel structure of p-GaN high-electron-mobility transistor (HEMT) is proposed and studied. It features two composite layers. One is the composite passivation (CP) layer consisting of Si3N4 and high-permittivity (HK) film. The other is a composite barrier (CB) layer consisting of Al
x
Ga1−x
N/AlN/Al0.23Ga0.77N. Due to the coordinated effect of CP and CB, the specific on-resistance (R
ON, SP) can be reduced under the premise of ensuring breakdown voltage (BV). Meanwhile, since the HK film in CP introduces a mechanism to automatically compensate the hot electrons trapped by surface states, the current collapse effect could be suppressed. According to the simulation results, in comparison with the conventional p-GaN HEMT, the proposed one using TiO2 as the HK material and using Al-component of 0.35 for Al
x
Ga1−x
N gains a 29.5% reduction in R
ON, SP while getting a 9.8% increase in BV, which contributes to a 50.5% decrease in the energy loss during one cycle at 200 kHz. It is also demonstrated by the simulation results that the current collapse in the proposed device is reduced by 28.6%. Thereby, a promising p-GaN HEMT with improved performance and reliability is invented.