This paper reports the fabrication of flexible surface acoustic wave (SAW) devices on ZnO/polyimide substrates and investigation of the effects of the deposition conditions, crystal quality, and film thickness of the ZnO films on the performance of the SAW devices. The deposition pressure has a significant effect on the crystal quality of the ZnO film, and which in turn affects the transmission of the SAW devices strongly. The device performance improves greatly and is mainly attributed to the better crystal quality of the film deposited at high pressure. The performance of the SAW devices also improves significantly with increase in ZnO film thickness, owing to the reduced defects and improved piezoelectric effect for the films with large grain sizes and better crystallinity as the film thickness increases. Flexible SAW devices with a resonant frequency of 153 MHz, a phase velocity of 1836 m/s, and a coupling coefficient of 0.79% were obtained on the ZnO film of 4 μm thickness, demonstrated its great potential for applications in electronics and microsystems.