The novel multivalued neutrosophic aggregation operators are proposed in this paper to handle the complicated decision-making situations with correlation between specific information and partitioned parameters at the same time, which are based on weighted power partitioned Hamy mean (WMNPPHAM) operators for multivalued neutrosophic sets (MNS) proposed by combining the Power Average and Hamy operators. Firstly, the power partitioned Hamy mean (PPHAM) is capable of capture the correlation between aggregation parameters and the relationship among attributes dividing several parts, where the attributes are dependent definitely within the interchangeable fragment, other attributes in divergent sections are irrelevant. Secondly, because MNS can effectively represent imprecise, insufficient, and uncertain information, we proposed the multivalued neutrosophic PMHAM (WMNPHAM) operator for MNS and its partitioned variant (WMNPPHAM) with the characteristics and examples. Finally, this multiple attribute group decision making (MAGDM) technique is proven to be feasible by comparing with the existing methods to confirm this method’s usefulness and validity.