The correlation coefficient between two variables is an important aspect of statistics. The accuracy of assessments of correlation relies on information from a set of discourses. Data collected in statistical studies are often full of exceptions. Pythagorean fuzzy soft sets (PFSS) are a parametrized family of extended Pythagorean fuzzy sets (PFS). They comprise a generalization of intuitionistic fuzzy soft sets which may be used to accurately assess deficiencies and uncertainties in evaluations. PFSS can accommodate uncertainty more competently than intuitionistic fuzzy soft sets and are the most important strategy when dealing with fuzzy information in decision-making processes. Herein, the concept and characteristics of correlation coefficients and the weighted correlation coefficients in PFSS are discussed. We also introduce the Pythagorean fuzzy soft weighted average (PFSWA) and Pythagorean fuzzy soft weighted geometric (PFSWG) operators and discuss their desirable characteristics. A prioritization technique for order preference by similarity to the ideal solution (TOPSIS) under the PFSS environment based on correlation coefficients and weighted correlation coefficients will be introduced. Through the proposed methodology, a technique for decision-making is developed. Additionally, an application of the proposed TOPSIS technique is presented for green supplier selection in green supply chain management (GSCM). The practicality, efficacy, and flexibility of the proposed approach is proved through comparative analyses, drawing upon existing studies.
The correlation coefficient between the two parameters plays a significant part in statistics. Furthermore, the exactness of the assessment of correlation depends upon information from the set of discourses. The data collected for various statistical studies are full of ambiguities. The idea of interval-valued intuitionistic fuzzy soft sets is an extension of intuitionistic fuzzy soft sets that is used to express insufficient evaluation, uncertainty, and anxiety in decision-making. Intuitionistic fuzzy soft sets consider two different types of information, such as membership degree and nonmembership degree. In this paper, the concepts and properties of the correlation coefficient and the weighted correlation coefficient of interval-valued intuitionistic fuzzy soft sets are proposed. A prioritization technique for order preference by similarity to the ideal solution based on interval-valued intuitionistic fuzzy soft sets of correlation coefficients and the weighted correlation coefficient is introduced. We also proposed interval-valued intuitionistic fuzzy soft weighted average and interval-valued intuitionistic fuzzy soft weighted geometric operators and developed decision-making techniques based on the proposed operators. By using the developed techniques, a method for solving decision-making problems is proposed. To ensure the applicability of the proposed methods, an illustrative example is given. Finally, we present a comparison of some existing methods with our proposed techniques.
In this paper, we investigate the multi-criteria decision-making complications under intuitionistic fuzzy hypersoft set (IFHSS) information. The IFHSS is a proper extension of the intuitionistic fuzzy soft set (IFSS) which discusses the parametrization of multi-sub attributes of considered parameters, and accommodates more hesitation comparative to IFSS utilizing the multi sub-attributes of the considered parameters. The main objective of this research is to introduce operational laws for intuitionistic fuzzy hypersoft numbers (IFHSNs). Additionally, based on developed operational laws two aggregation operators (AOs), i.e., intuitionistic fuzzy hypersoft weighted average (IFHSWA) and intuitionistic fuzzy hypersoft weighted geometric (IFHSWG), operators have been presented with their fundamental properties. Furthermore, a decision-making approach has been established utilizing our developed aggregation operators (AOs). Through the established approach, a technique for solving decision-making (DM) complications is proposed to select sustainable suppliers in sustainable supply chain management (SSCM). Moreover, a numerical description is presented to ensure the validity and usability of the proposed technique in the DM process. The practicality, effectivity, and flexibility of the current approach are demonstrated through comparative analysis with the assistance of some prevailing studies.
The Pythagorean fuzzy soft sets (PFSS) is a parametrized family and one of the appropriate extensions of the Pythagorean fuzzy sets (PFS). It’s also a generalization of intuitionistic fuzzy soft sets, used to accurately assess deficiencies, uncertainties, and anxiety in evaluation. The most important advantage of PFSS over existing sets is that the PFS family is considered a parametric tool. The PFSS can accommodate more uncertainty comparative to the intuitionistic fuzzy soft sets, this is the most important strategy to explain fuzzy information in the decision-making process. The main objective of the present research is to progress some operational laws along with their corresponding aggregation operators in a Pythagorean fuzzy soft environment. In this article, we introduce Pythagorean fuzzy soft weighted averaging (PFSWA) and Pythagorean fuzzy soft weighted geometric (PFSWG) operators and discuss their desirable characteristics. Also, develop a decision-making technique based on the proposed operators. Through the developed methodology, a technique for solving decision-making concerns is planned. Moreover, an application of the projected methods is presented for green supplier selection in green supply chain management (GSCM). A comparative analysis with the advantages, effectiveness, flexibility, and numerous existing studies demonstrates the effectiveness of this method.
The correlation coefficient between two variables plays an important role in statistics. Also, the accuracy of relevance assessment depends on information from a set of discourses. The data collected from numerous statistical studies are full of exceptions. The Pythagorean fuzzy hypersoft set (PFHSS) is a parameterized family that deals with the subattributes of the parameters and an appropriate extension of the Pythagorean fuzzy soft set. It is also the generalization of the intuitionistic fuzzy hypersoft set (IFHSS), which is used to accurately assess insufficiency, anxiety, and uncertainties in decision-making. The PFHSS can accommodate more uncertainties compared to the IFHSS, and it is the most substantial methodology to describe fuzzy information in the decision-making process. The core objective of the this study is to develop the notion and features of the correlation coefficient and the weighted correlation coefficient for PFHSS and to introduce the aggregation operators such as Pythagorean fuzzy hypersoft weighted average (PFHSWA) and Pythagorean fuzzy hypersoft weighted geometric (PFHSWG) operators under the PFHSS scenario. A prioritization technique for order preference by similarity to the ideal solution (TOPSIS) under PFHSS based on correlation coefficients and weighted correlation coefficients is presented. Through the developed methodology, a technique for solving multiattribute group decision-making (MAGDM) problem is planned. Also, the importance of the developed methodology and its application in indicating multipurpose antivirus mask throughout the COVID-19 pandemic period is presented. A brief comparative analysis is described with the advantages, effectiveness, and flexibility of numerous existing studies that demonstrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.