Accurate condition monitoring of industrial cyber-physical systems/components demands the use of reliable fault detection and isolation (FD&I) methodologies. Meta-heuristic algorithms for feature selection have good exploration capability for optimal discriminative feature selection for fault isolation/classification of which the Binary Particle swarm optimization (BPSO) is superior to its counterparts. This study presents a robust approach for vibration-based failure diagnostics of electromagnetic/solenoid pumps which employ a multi-domain feature extraction procedure (statistical time-domain and frequencydomain features, Mel frequency cepstral coefficients, and continuous wavelet coefficients) for capturing linear and nonlinear properties from the signals. Compared with other filter and wrapper methods for supervised feature selection, a hybrid filter-wrapper (Pearson's correlation-BPSO (ρ-BPSO)) feature selection procedure is proposed for global search of optimal discriminative (uncorrelated) features for fault diagnosis with an RBF-kernel support vector machine (SVM*). Subsequently, a practical case study involving five VSC63A5 solenoid pumps at various operating/fault conditions is presented for validating the performance of the proposed approach. Results show the superior performance of the proposed hybrid filterwrapper approach against filter-based and wrapper-based techniques for discriminative feature selection. Also, the proposed ρ-BPSO-SVM* diagnostics model performance was compared with other standard fault isolation/classification methods.