The separation of actinides from lanthanides in spent nuclear fuel reprocessing is a vital step of nuclear fuel cycle process. As one class of mature industrial extractants, the organophosphorus extractants have been widely used for the extraction and separation of actinides and lanthanides in spent fuel reprocessing due to their strong extraction ability and low-cost acquisition. In this concept, the application scope of tributyl phosphate (TBP), bis(2-ethylhexyl) phosphate (HDEHP), octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), trialkyl phosphine oxide (TRPO), and purified Cyanex 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid, HA301) are introduced, and their extraction mechanism, as well as structure-function relationships for separation of actinides over lanthanides are also discussed. Furthermore, the design criteria, extraction properties and mechanism of several typical newly developed organophosphorus extractants (CMPO-modified calixarene/pillarene, phenanthroline-derived organophosphorus extractants, and phosphate-modified carborane) based on pre-organized skeletons are briefly reviewed. Finally, the important role played by those organophosphorus extractants is emphasized and potential applications in separation of actinides over lanthanides in future advanced nuclear fuel cycle are identified.