We present evidence that the transition between organic and third phases, which can be observed in the plutonium uranium reduction extraction (PUREX) process at high metal loading, is an unusual transition between two isotropic bicontinuous microemulsion phases. As this system contains so many components, however, we have been seeking first to investigate the properties of a simpler system, namely, the related metal-free, quaternary water/n-dodecane/nitric acid/tributyl phosphate (TBP) system. This quaternary system has been shown to exhibit, under appropriate conditions, three coexisting phases: a light organic phase, an aqueous phase, and the so-called third phase. In the current work, we focused on the coexistence of the light organic phase with the third phase. Using Gibbs ensemble Monte Carlo (GEMC) simulations, we found coexistence of a phase rich in nitric acid and dilute in n-dodecane (the third phase) with a phase more dilute in nitric acid but rich in n-dodecane (the light organic phase). The compositions and densities of these two coexisting phases determined using the simulations were in good agreement with those determined experimentally. Because such systems are generally dense and the molecules involved are not simple, the particle exchange rate in their GEMC simulations can be rather low. To test whether a system having a composition between those of the observed third and organic phases is indeed unstable with respect to phase separation, we used the Bennett acceptance ratio method to calculate the Gibbs energies of the homogeneous phase and the weighted average of the two coexisting phases, where the compositions of these phases were taken both from experimental results and from the results of the GEMC simulations. Both demixed states were determined to have statistically significant lower Gibbs energies than the uniform, mixed phase, providing confirmation that the GEMC simulations correctly predicted the phase separation. Snapshots from the simulations and a cluster analysis of the organic and third phases revealed structures akin to bicontinuous microemulsion phases, with the polar species residing within a mesh and with the surface of the mesh formed by amphiphilic TBP molecules. The nonpolar n-dodecane molecules were observed in these snapshots to be outside this mesh. The only large-scale structural differences observed between the two phases were the dimensions of the mesh. Evidence for the correctness of these structures was provided by the results of small-angle X-ray scattering (SAXS) studies, where the profiles obtained for both the organic and third phases agreed well with those calculated from simulations. Finally, we looked at the microscopic structures of the two phases. In the organic phase, the basic motif was observed to be one nitric acid molecule hydrogen-bonded to a TBP molecule. In the third phase, the most common structure was that of the hydrogen-bonded TBP-HNO-HNO chain. A cluster analysis provided evidence for TBP forming an extended, connected network in both phases. S...
A refined model for tri-n-butyl phosphate (TBP), which uses a new set of partial charges generated from our ab initio density functional theory calculations, has been proposed in this study. Molecular dynamics simulations are conducted to determine the thermodynamic properties, transport properties, and the microscopic structures of liquid TBP, TBP/water mixtures, and TBP/n-alkane mixtures. These results are compared with those obtained from four other TBP models, previously described in the literature. We conclude that our refined TBP model appears to be the only TBP model from this set that, with reasonable accuracy, can simultaneously predict the properties of TBP in bulk TBP, in organic diluents, and in aqueous solution. The other models only work well for two of the three systems mentioned above. This new TBP model is thus appropriate for the simulation of liquid-liquid extraction systems in the nuclear extraction process, where one needs to simultaneously model TBP in both aqueous and organic phases. It is also promising for the investigation of the microscopic structure of the organic phase in these processes and for the characterization of third-phase formation, where TBP again interacts simultaneously with both polar and nonpolar molecules. Because the proposed TBP model uses OPLS-2005 Lennard-Jones parameters, it may be used with confidence to model mixtures of TBP with other species whose parameters are given by the OPLS-2005 force field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.