This paper has investigated the dynamic behavior of a cylindrically shaped DNA nanoparticle during its displacement on a rough substrate by an atomic force microscope. Due to the cylindrical geometry of the DNA nanoparticle, two multi-asperity models have been considered for the adhesion between nanoparticle and rough substrate. The two selected models for the contact between smooth and rough surfaces have been further developed for cylindrical geometries. One of these models is analytical and based on uniform asperities and the other one is based on random asperities. Also, in each of these models, the real area of contact between particle and rough substrate has been calculated based on the number of asperities in contact. Then, a 3D dynamic model for the manipulation of cylindrical nanoparticle on rough substrate has been developed and simulated. The maximum difference between the results obtained from the two multiasperity models is \5 %, indicating a good agreement between the two models. The comparison of critical forces indicates that the critical force necessary for moving a particle is smaller for rough substrates than for smooth substrates and larger compared to the critical force obtained from the Rabinovich model, which is singleasperity model. Finally, the surface roughness parameters were estimated from the topographic images, and the manipulation process was simulated for these substrates by developing the relevant equations. The obtained results indicated that the critical force for a substrate with a higher root-mean-square roughness is smaller and particles can be moved easier on such a substrate.