Parmigiano Reggiano cheese is one of the most appreciated and consumed foods worldwide, especially in Italy, for its high content of nutrients and taste. However, these characteristics make this product subject to counterfeiting in different forms. In this study, a novel method based on an electronic nose has been developed to investigate the potentiality of this tool to distinguish rind percentages in grated Parmigiano Reggiano packages that should be lower than 18%. Different samples, in terms of percentage, seasoning and rind working process, were considered to tackle the problem at 360°. In parallel, GC-MS technique was used to give a name to the compounds that characterize Parmigiano and to relate them to sensors responses. Data analysis consisted of two stages: Multivariate analysis (PLS) and classification made in a hierarchical way with PLS-DA ad ANNs. Results were promising, in terms of correct classification of the samples. The correct classification rate (%) was higher for ANNs than PLS-DA, with correct identification approaching 100 percent.