Real-time and high performance occluded object imaging is a big challenge to many computer vision applications. In recent years, camera array synthetic aperture theory proves to be a potential powerful way to solve this problem. However, due to the high cost of complex system hardware, the severe blur of occluded object imaging, and the slow speed of image processing, the exiting camera array synthetic aperture imaging algorithms and systems are difficult to apply in practice. In this paper, we present a novel handheld system to handle those challenges. The objective of this work is to design a convenient system for real-time high quality object imaging even under severe occlusion. The main characteristics of our work include: (1) To the best of our knowledge, this is the first real-time handheld system for seeing occluded object in synthetic imaging domain using color and depth images.(2) A novel sequential synthetic aperture imaging framework is designed to achieve seamless interaction among multiple novel modules, and this framework includes object probability generation, virtual camera array generation, and sequential synthetic aperture imaging. (3) In the virtual camera array generation module, based on the integration of color and depth information, a novel feature set iterative optimization algorithm is presented, which can improve the robustness and accuracy of camera pose estimation even in dynamic occlusion scene. Experimental results in challenging scenarios demonstrate the superiority of our system both in robustness and efficiency compared against the state-of-the-art algorithms.