Artificial neural networks (ANNs) are computational models, loosely inspired by biological neural networks, consisting of interconnected groups of artificial neurons which process information using a connectionist approach. ANNs are widely applied to problems like pattern recognition, classification, and time series analysis. The success of an ANN application usually requires a high number of experiments. Moreover, several parameters of an ANN can affect the accuracy of solutions. A particular type of evolving system, namely neuro-genetic systems, have become a very important research topic in ANN design. They make up the so-called Evolutionary Artificial Neural Networks (EANNs), i.e., biologicallyinspired computational models that use evolutionary algorithms (EAs) in conjunction with ANNs. Evolutionary algorithms and state-of-the-art design of EANN were introduced first in the milestone survey by Xin Yao (1999), and, more recently, by Abraham (2004), by Cantu-Paz and Kamath (2005), and then by Castellani (2006). The aim of this article is to present the main evolutionary techniques used to optimize the ANN design, providing a description of the topics related to neural network design and corresponding issues, and then, some of the most recent developments of EANNs found in the literature. Finally a brief summary is given, with a few concluding remarks.