2012
DOI: 10.1109/lsp.2011.2179801
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Multiple Sparse Source Localization Using Triangular Pyramid Microphone Array

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
1

Year Published

2013
2013
2025
2025

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 27 publications
(8 citation statements)
references
References 7 publications
0
7
0
1
Order By: Relevance
“…In (8), H 1 m is caused by the second-order noise term in h 1 due to squaring of the measurements, and the remaining components come from the measurement noise in the regressor G 1 .…”
Section: Initial Positioning Results Deviation Analysis About ϕmentioning
confidence: 99%
See 1 more Smart Citation
“…In (8), H 1 m is caused by the second-order noise term in h 1 due to squaring of the measurements, and the remaining components come from the measurement noise in the regressor G 1 .…”
Section: Initial Positioning Results Deviation Analysis About ϕmentioning
confidence: 99%
“…Passive source localization is a fundamental problem that has found numerous practical applications in many fields, such as sensor networks [1][2][3][4], wireless communications [5][6][7], microphone arrays [8,9], sonar [10] and many others. Time Differences of Arrival (TDOA) is maybe the most common technique for passive localization using a number of spatially separated sensors.…”
Section: Introductionmentioning
confidence: 99%
“…Cho et al [13] develop a SSL system for mobile robots that uses a square microphone array of 0.17×0.17 m 2 with four sensors attached on the shoulder of a plaster cast of the small size home robot. Ren et al [14] use a triangular pyramid microphone array with four omnidirectional microphones for multiple sparse source localization. Its lateral faces are isosceles right triangles.…”
Section: Related Workmentioning
confidence: 99%
“…En este trabajo de investigaciónón, se toma como referencias los diversos métodos matemáticos utilizados para las localizaciones inalámbricas basadas en escenarios [12] expuestas por el autor Junjie, entre las que destacan la proximidad, la triangulación y fingerprint (huella dactilar). De estas, se utiliza la denominada triangulación, en la que diversos autores y expertos la consideran como la técnica más común no basada en estudios [27], al permitir medir la distancia entre el terminal móvil y tres transmisores colocados en diferentes posiciones, obteniendo la estimación de la ubicación mediante la resolución de funciones algebraicas, ya que también, utiliza aspectos teóricos provenientes de la geometría para obtener la localización de un usuario al estar determinado para cada una de las distancias que son asignadas a los puntos de medición o puntos de acceso. Claramente, las técnicas no basadas en la investigación están limitadas por el modelo de pérdida de ruta.…”
Section: Métodos Matemáticos Para La Localización Inalámbrica Basada unclassified