With the improvement of material living standards, spiritual entertainment has become more and more important. As a more popular spiritual entertainment project, film and television entertainment is gradually receiving attention from people. However, in recent years, the film industry has developed rapidly, and the output of animation movies has also increased year by year. How to quickly and accurately find the user’s favorite movies in the huge amount of animation movie data has become an urgent problem. Based on the above background, the purpose of this article is to study the new visual expression of animation movies based on artificial intelligence and machine learning technology. This article takes the film industry’s informatization and intelligent development and upgrading as the background, uses computer vision and machine learning technology as the basis to explore new methods and new models for realizing film visual expression, and proposes relevant thinking to promote the innovative development of film visual expression from a strategic level. This article takes the Hollywood anime movie “Kung Fu Panda” as a sample and uses convolutional neural algorithms to study its new visual expression. The study found that after the parameters of the model were determined, the accuracy of the test set did not change much, all around 57%. This is of great significance for improving the audiovisual quality and creative standards of film works and promoting the healthy and sustainable development of the film industry.
In this paper, an efficient distributed approach for implementing the approximate message passing (AMP) algorithm, named distributed AMP (DAMP), is developed for compressed sensing (CS) recovery in sensor networks with the sparsity K unknown. In the proposed DAMP, distributed sensors do not have to use or know the entire global sensing matrix, and the burden of computation and storage for each sensor is reduced. To reduce communications among the sensors, a new data query algorithm, called global computation for AMP (GCAMP), is proposed. The proposed GCAMP based DAMP approach has exactly the same recovery solution as the centralized AMP algorithm, which is proved theoretically in the paper. The performance of the DAMP approach is evaluated in terms of the communication cost saved by using GCAMP. For comparison purpose, thresholding algorithm (TA), a well known distributed Top-K algorithm, is modified so that it also leads to the same recovery solution as the centralized AMP. Numerical results demonstrate that the GCAMP based DAMP outperforms the Modified TA based DAMP, and reduces the communication cost significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.