The Weilasituo Li–polymetallic deposit, located on the western slope of the southern Great Xing’an Range in the eastern Central Asian Orogenic Belt, is hosted by quartz porphyry with crypto-explosive breccia-type Li mineralisation atop and vein-type Sn-Mo-W-Zn polymetallic mineralisation throughout the breccia pipe. This study introduces new data on multistage quartz and mica in situ trace elements; the study was conducted using laser ablation inductively coupled plasma mass spectrometry and 40Ar/39Ar dating of zinnwaldite to delineate the metallogenic age and genesis of Li mineralisation. Zinnwaldite yields a plateau age of 132.45 ± 1.3 Ma (MSWD = 0.77), representing Early Cretaceous Li mineralisation. Throughout the magmatic–hydrothermal process, quartz trace elements showed Ge enrichment. Li, Al, and Ti contents decreased, with Al/Ti and Ge/Ti ratios increasing, indicating increased magmatic differentiation, slight acidification, and cooling. Mica’s rising Li, Rb, Cs, Mg, and Ti contents and Nb/Ta ratio, alongside its falling K/Rb ratio, indicate the magma’s ongoing crystallisation differentiation. Fractional crystallisation primarily enriched Li, Rb, and Cs in the late melt. Mica’s high Sc, V, and W contents indicate a high fO2 setting, with a slightly lower fO2 during zinnwaldite formation. Greisenisation observed Zn, Mg, and Fe influx from the host rock, broadening zinnwaldite distribution and forming minor Zn vein orebodies later. Late-stage fluorite precipitation highlights a rise in F levels, with fluid Sn and W levels tied to magma evolution and F content. In summary, the Weilasituo Li–polymetallic deposit was formed in an Early Cretaceous extensional environment and is closely related to a nearby highly differentiated Li-F granite. During magma differentiation, rare metal elements such as Li and Rb were enriched in residual melts. The decrease in temperature and the acidic environment led to the precipitation of Li-, Rb-, and W-bearing minerals, and the increased F content in the late stage led to Sn enrichment and mineralisation. Fluid metasomatism causes Zn, Mg, and Fe in the surrounding rock to enter the fluid, and Zn is enriched and mineralised in the later period.