Since the discovery of the hepatitis C virus over 15 years ago, scientists have raced to develop diagnostics, study the virus and find new therapies. Yet virtually every attempt to dissect this pathogen has met with roadblocks that impeded progress. Its replication was restricted to humans or experimentally infected chimpanzees, and efficient growth of the virus in cell culture failed until very recently. Nevertheless hard-fought progress has been made and the first wave of antiviral drugs is entering clinical trials.virus life cycle: first, as a messenger RNA (mRNA) for translation of the viral proteins; second as a template for RNA replication; and third, as a nascent genome packaged within new virus particles. Virions presumably form by budding into the endoplasmic reticulum (ER) and leave the cell through the secretory pathway.Researchers have followed each aspect of the virus life cycle in turn. Just as infection starts from an HCV genome entering the cytoplasm and progressing through translation, replication and particle production, our understanding has progressed from having a genome sequence to understanding translation and the viral gene products, characterizing RNA replication, and establishing systems to characterize virus particles and infectivity. In this review, we summarize the current understanding of HCV replication with special emphasis on recent developments. As space is limited, we cannot be comprehensive; readers may wish to consult other reviews for detail and breadth 5,13,14.
Initial studies: HCV translation and polyprotein processingThe identification of HCV yielded a partial viral genome sequence 5 . Research in the early 1990s focused on dissecting HCV gene expression and characterizing the gene products. Much has been learned about the biochemistry of three key enzymes, and structural information is now available at the atomic level for roughly half of the proteincoding region.Translation of the HCV genome, which lacks a 5፱ cap, depends on an internal ribosome entry site (IRES) within the 5፱-noncoding region (NCR). The HCV IRES binds 40S ribosomal subunits directly and avidly, bypassing the need for pre-initiation factors, and inducing an mRNA-bound conformation in the 40S subunit 15 . The IRES-40S complex then recruits eukaryotic initiation factor (eIF) 3 and the ternary complex of Met-tRNA-eIF2-GTP to form a non-canonical 48S intermediate, before a kinetically slow transition to the translationally active 80S complex 16,17 .Once initiated, translation of the HCV genome produces a large polyprotein that is proteolytically cleaved to produce 10 viral proteins (Fig. 2a). The amino-terminal one-third of the polyprotein encodes the virion structural proteins: the highly basic core (C) protein, and glycoproteins E1 and E2. After the structural region comes a small integral membrane protein, p7, which seems to function as an ion channel 18,19 . The remainder of the genome encodes the nonstructural (NS) proteins NS2, NS3, NS4A, NS4B, NS5A and NS5B, which coordinate the intracellular process...