2020
DOI: 10.1016/j.apacoust.2020.107210
|View full text |Cite
|
Sign up to set email alerts
|

A novel set membership fast NLMS algorithm for acoustic echo cancellation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
3
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 20 publications
(6 citation statements)
references
References 24 publications
0
3
0
2
Order By: Relevance
“…$ 89: (11) Específicamente, si el conjunto 𝜓(𝑛) se encuentra en ℋ(𝑖), no se requiere calcular los coeficientes del vector 𝐰, ya que estos se encuentran dentro del conjunto solución.…”
Section: 𝜓(𝑛) = ⋂ ℋ(𝑖)unclassified
See 1 more Smart Citation
“…$ 89: (11) Específicamente, si el conjunto 𝜓(𝑛) se encuentra en ℋ(𝑖), no se requiere calcular los coeficientes del vector 𝐰, ya que estos se encuentran dentro del conjunto solución.…”
Section: 𝜓(𝑛) = ⋂ ℋ(𝑖)unclassified
“…En años recientes, diversos autores han propuesto métodos para reducir el costo computacional de los algoritmos adaptativos. Una de las técnicas más eficientes es la de conjunto de membresías (SM -Set-Membership) [10][11][12], en la cual los algoritmos actualizan los coeficientes del filtro si la señal de error es mayor a un umbral previamente establecido, por lo tanto, el número de operaciones se disminuye considerablemente una vez que la potencia del error se ha reducido.…”
Section: Introductionunclassified
“…In work [18], a nonlinear adaptive filter based on the kernel set membership method was introduced for the purpose of reducing complexity and increasing tracking ability. Many improvements to the set membership NLMS algorithm for the acoustic echo and sparse channel estimation problem have been proposed [19]- [22]. To reduce power consumption in wireless sensor networks, solutions based on SM filtering strategy have also received the attention of many researchers [23], [24].…”
Section: Introductionmentioning
confidence: 99%
“…NLMS provides faster adaptive calculation and ensures an increasingly stable combination based on various input signal powers [31]. However, although many scholars have improved the LMS algorithm [32][33][34], for wideband signals, the noise reduction effect of using only the LMS algorithm is uneven, and the performance is unstable.…”
Section: Introductionmentioning
confidence: 99%