One of the main shortcomings in a field effect diode (FED) is its scaling. Use of an oxide layer in the channel is proposed to enhance the control of the gate on the channel carriers. This is the so-called silicon on raised insulator FED (SORI-FFD) structure. The Shockley–Read–Hall (SRH) mechanism is one of the main components of leakage current in FED devices. The potential induced by the gates in the OFF-state of a SORI-FFD, is larger than that induced by the gates of a regular FED. This reduces, SRH recombination rate. Hence, OFF-state characteristics of the SORI-FED device improves. We evaluate the impact of band-to-band tunneling (BTBT) on the electrical characteristics of Modified FED (M-FED).We show that for channel lengths of 35 nm and lower this device does not turn off. While, the proposed structure makes device channel length scaling possible down to 15 nm. We will also compare electrical characteristics of SORI-FED and M-FED using three metrics: gate delay time versus channel length, gate delay time versus I ON /I OFF ratio and energy-delay product versus channel length. Benchmarking results show the proposed FED structure provides improvement in I ON /I OFF ratio and holds promise for future logic transistor applications.