Abstract. We propose one-shot Fourier-spectroscopic tomography as a method of ultraminiature spectroscopic imaging. The apparatus used in this technique consists solely of a glass slab with a portion of its surface polished at a certain inclination angle-a device we term a relative-inclination phase shifter-simply mounted on an infinite-distance-corrected optical imaging system. For this reason, the system may be ultraminiaturized to sizes on the order of a few tens of millimeters. Moreover, because our technique uses a near-common-path wavefrontdivision phase-shift interferometer and has absolutely no need for a mechanical drive unit, it is highly robust against mechanical vibrations. In addition, because the proposed technique uses Fourier-transform spectroscopy, it offers highly efficient light utilization and an outstanding signal-to-noise ratio compared to devices that incorporate distributed or hyperspectral acousto-optical tunable filters. The interferogram, which is a pattern formed by interference of waves at all wavelengths, reflects the spatial variation in the intensity of the interference depending on the magnitude of the phase shift. We first discuss the design of the phase shifter and the results of tests to validate the principles underlying one-shot Fourier-spectroscopic tomography. We then report the results of one-dimensional spectroscopic imaging using this technique. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.