A study of the interaction between mobile phone antennas and a human head in the presence of different types of metallic objects, attached and pierced to the compressed ear, is presented in this article. Computed and measured results have been performed by considering a quasi-half-wavelength dipole as the radiating source and measurements with the DASY4 dosimetric assessment system. Two different human head models have been implemented: a homogeneously shaped sphere and a three-level head model with four different kinds of tissue. Antenna input impedance, reflection coefficient, radiation patterns, SAR distribution, absorbed power, and peak SAR values have been computed and measured for diverse scenarios, electromagnetic simulators, and organs. Despite the measuring accuracy limitations of the study, both simulated and measured results suggest that special attention has to be paid to peak SAR averaged values when wearing metallic objects close to the radiation source, since some increment of peak SAR averaged values is expected.