Stream function as a coordinate approach' (SFC) combined with compact high-order finite difference schemes has been developed and applied to aeroacoustics and unsteady aerodynamics problems. Straightforward implementation of SFC creates coarse grids at the vicinity of stagnation points that smears high-order numerical computations. Grid clustering is employed to resolve coarse grid near stagnations points. The agreement between numerical results and particle image velocimetry (PIV) measurements for flapping airfoil shows the robustness of the current approach for performing high-order computations.