Filtration of the suspension in a porous medium is important when strengthening the soil and creating watertight partitions for the constructi on of tunnels and underground structures. A model of deep bed filtration with variable porosity and fractional flow, and a size-exclusion mechanism of particle retention are considered. A global asymptotic solution is constructed in the entire domain in which the filtering process takes place. The obtained asymptotics is close to the numerical solution.
Filtration of suspension in a porous medium is actual in the construction of tunnels and underground structures. A model of deep bed filtration with size-exclusion mechanism of particle capture is considered. The inverse filtration problem - finding the Langmuir coefficient from a given concentration of suspended particles at the porous medium outlet is solved using the asymptotic solution near the concentrations front. The Langmuir coefficient constants are obtained by the least squares method from the condition of best approximation of the asymptotics to exact solution. It is shown that the calculated parameters are close to the coefficients of the model, and the asymptotics well approximates the exact solution
During the construction of hydraulic and underground structures, a grout solution is pumped into the ground to create waterproof partitions. The liquid grout is filtered in the porous rock and clogs the pores when hardened. The mathematical model of deep bed filtration describes the transfer of suspension particles and colloids by a fluid flow through the pores of a rock. For a one-dimensional filtration problem in a homogeneous porous medium with almost constant coefficients, an asymptotic solution is constructed. The asymptotics is compared with the numerical solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.