With technologies rapidly evolving, many research institutions are now opting to invest in costly, high-quality, specialised microscopes which are shared by many researchers. As a consequence, the user may not have the ability to adapt a microscope to their specific needs and limitations in experimental design are introduced. A flexible work-horse microscopy system is a valuable tool in any laboratory to meet the diverse needs of a research team and promote innovation in experimental design. We have developed the Flexiscope; a multi-functional, adaptable, efficient and high-performance microscopy/electrophysiology system for everyday applications in a neurobiology laboratory. The core optical components are relatively constant in the three configurations described here; an upright configuration, an inverted configuration and an upright/electrophysiology configuration. We have provided a comprehensive description of the Flexiscope. We show that this method is capable of oblique infrared illumination imaging, multi-channel fluorescent imaging, and automated 3D scanning of larger specimens. Image quality is conserved across the three configurations of the microscope, and conversion between configurations is possible quickly and easily, while the motion control system can be repurposed to allow sub-micron computer-controlled micromanipulation. The Flexiscope provides similar performance and usability to commercially available systems. However, as it can be easily reconfigured for multiple roles, it can remove the need to purchase multiple microscopes, giving significant cost savings. The modular re-configurable nature allows the user to customise the system to their specific needs and adapt/upgrade the system as challenges arise, without requiring specialised technical skills.