1980
DOI: 10.1021/jo01311a060
|View full text |Cite
|
Sign up to set email alerts
|

A Pariser-Parr-Pople-based set of Hueckel molecular orbital parameters

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
60
0
1

Year Published

1999
1999
2018
2018

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 106 publications
(63 citation statements)
references
References 0 publications
2
60
0
1
Order By: Relevance
“…Syntaurus calculates on the fly the per-atom delocalization energies (see Ref. [46] and SI, Section S11) of aromatic systems and then uses these values to determine where and which substitutions are allowed (electrophilic and nucleophilic substitutions are allowed if delocalization energy is, respectively,b elow and above certain thresholds).…”
Section: Angewandte Chemiementioning
confidence: 99%
“…Syntaurus calculates on the fly the per-atom delocalization energies (see Ref. [46] and SI, Section S11) of aromatic systems and then uses these values to determine where and which substitutions are allowed (electrophilic and nucleophilic substitutions are allowed if delocalization energy is, respectively,b elow and above certain thresholds).…”
Section: Angewandte Chemiementioning
confidence: 99%
“…Both TRE and BRE are given in units of jbj, where b is the standard resonance integral in H€ uckel theory. Van-Catledge's set of H€ uckel parameters for heteroatoms (29) has been used. In general, aromatic molecules are chemically more stable than less aromatic or antiaromatic molecules.…”
Section: Methods Of Calculationmentioning
confidence: 99%
“…3840 We will use, if necessary, the Hückel parameters reported by VanCatledge. 50 We must note that the reference polynomials for a heterocyclic π-system and subsystems are no longer matching polynomials. All matching polynomials in the form of eq 5 must be replaced by the corresponding reference polynomials for the heterocycle and its subsystems, which can be obtained by means of the generalized Sachs formula.…”
Section: 28mentioning
confidence: 99%