Therapeutic outcomes of definitively treated non-small-cell lung cancer (NSCLC) are unacceptably poor. It has been proposed that the manipulation of dendritic cells (DCs) as a "natural" vaccine adjuvant may prove to be a particularly effective way to stimulate antitumor immunity. Presently, there is no standardized methodology for preparing vaccines and many questions concerning the optimal source and type of antigens as well as maturation state and activity of DCs are still unsolved. The study population comprised of ten patients with histologically confirmed NSCLC (mean age: 67.63 ± 6.15 years). Resected small tumor pieces were placed in tissue culture dishes containing different growth factors in order to obtain pure cancer cells. Seven days after the operation, the PBMC were collected and monocytes were purified by the adherence to culture dishes. Monocytes were cultured in RPMI 1640 medium supplemented with 10% of autologous plasma in the presence of rhIL-4 and rhGM-CSF to generate immature autologous (DCs). TNF-α with or without tumor cells' lysate were added to maturation of DCs. After 7 days of culture, DCs were harvested and the expression of CD1a, CD83, CD80, CD86 and HLA-DR antigens were analyzed by flow cytometry. We discovered higher (p=0.07) percentage of semimature DCs in tumor cell lysate culture in comparison with TNF-α culture (21.22 ± 16.82% versus 11.27 ± 11.64%). The expression of co-stimulatory and maturation markers (CD86, CD83 and HLA-DR) was higher on DCs from the culture with tumor cell lysate compared with TNF-α culture as a control. Specimen of NSCLC's culture prepared in this way could generate differences in DCs phenotype, which may have an influence on the therapeutic and protective antitumor immunity of the vaccine. Our research seems to be the next step in the development of DC-based vaccine. We are going to continue the investigation to start the preparation of a pattern of immunological vaccine against lung cancer.