FoxO proteins are major targets of insulin action. To better define the role of FoxO1 in mediating insulin effects in the liver, we generated liver-specific insulin receptor knockout (LIRKO) and IR/FoxO1 double knockout (LIRFKO) mice. Here we show that LIRKO mice are severely insulin resistant based on glucose, insulin and C-peptide levels, and glucose and insulin tolerance tests, and genetic deletion of hepatic FoxO1 reverses these effects. 13C-glucose and insulin clamp studies indicate that regulation of both hepatic glucose production (HGP) and glucose utilization is impaired in LIRKO mice, and these defects are also restored in LIRFKO mice corresponding to changes in gene expression. We conclude that (1) inhibition of FoxO1 is critical for both direct (hepatic) and indirect effects of insulin on HGP and utilization, and (2) extrahepatic effects of insulin are sufficient to maintain normal whole-body and hepatic glucose metabolism when liver FoxO1 activity is disrupted.
Background: FoxO1 regulates expression of lipogenic genes including srebp1. Results: FoxO1 inhibits transcription of SREBP-1c via coordinated effects on key regulatory factors including Sp1 and SREBP-1c itself. Conclusion: FoxO1 acts at multiple levels to prevent assembly of the transcriptional complex on the srebp1 gene. Significance: FoxO1 effectively inhibits SREBP-1c gene expression, a major regulator of hepatic lipogenesis.
Aims/hypothesis The aim of this study was to determine the impact of the common food additive carrageenan (E407) on glucose tolerance, insulin sensitivity and insulin signalling in a mouse model and human hepatic cells, since carrageenan is known to cause inflammation through interaction with toll-like receptor (TLR)4, which is associated with inflammation in diabetes. Methods Male C57BL/6J mice were given carrageenan (10 mg/l) in their drinking water, and underwent a glucose tolerance test (GTT), an insulin tolerance test (ITT) and an ante-mortem intraperitoneal insulin injection. HepG2 cells were exposed to carrageenan (1 mg/l×24 h) and insulin. Levels of phospho(Ser473)-protein kinase B (Akt), phospho (Ser307)-IRS1, phosphoinositide 3-kinase (PI3K) activity and phospho(Ser32)-inhibitor of κB (IκBα) were determined by western blotting and ELISA. Results Glucose tolerance was significantly impaired in carrageenan-treated 12-week-old mice compared with untreated controls at all time points (n=12; p<0.0001). Baseline insulin and insulin levels at 30 min after taking glucose during the GTT were significantly higher following carrageenan treatment. During the ITT, glucose levels declined by more than 80% in controls, but not in carrageenan-treated mice. Carrageenan exposure completely inhibited insulininduced increases in phospho-(Ser473)-Akt and PI3K activity in vivo in mouse liver and in human HepG2 cells. Carrageenan increased phospho(Ser307)-IRS1 levels, and this was blocked when carrageenan-induced inflammation was inhibited. Conclusion This is the first report of the impact of carrageenan on glucose tolerance and indicates that carrageenan impairs glucose tolerance, increases insulin resistance and inhibits insulin signalling in vivo in mouse liver and human HepG2 cells. These effects may result from carrageenan-induced inflammation. The results demonstrate extra-colonic manifestations of ingested carrageenan and suggest that carrageenan in the human diet may contribute to the development of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.