Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder diagnosed with hyperactivity, impulsivity, and a lack of attention inconsistent with the patient’s development level. The fact that people with ADHD frequently experience gastrointestinal (GI) dysfunction highlights the possibility that the gut microbiome may play a role in this condition. The proposed research aims to determine a biomarker for ADHD by reconstructing a model of the gut-microbial community. Genome-scale metabolic models (GEM) considering the relationship between gene-protein-reaction associations are used to simulate metabolic activities in organisms of gut. The production rates of dopamine and serotonin precursors and the key short chain fatty acids which affect the health status are determined under three diets (Western, Atkins, Vegan) and compared with those of healthy people. Elasticities are calculated to understand the sensitivity of exchange fluxes to changes in diet and bacterial abundance at the species level. The presence of Bacillota (genus Coprococcus and Subdoligranulum), Actinobacteria (genus Collinsella), Bacteroidetes (genus Bacteroides), Bacillota (genus Coprococcus and Subdoligranulum), and Bacteroidota (genus Alistipes) may be possible gut microbiota indicators of ADHD. This type of modeling approach taking microbial genome-environment interactions into account helps us understand the gastrointestinal mechanisms behind ADHD, and establish a path to improve the quality of life of ADHD patients.