RNA editing in higher plant mitochondria modifies mRNA sequences by means of C-to-U conversions at highly specific sites. To determine the cis elements involved in recognition of an editing site in plant mitochondria, deletion and site-directed mutation constructs containing the cognate cox II mitochondrial gene were introduced into purified mitochondria by electroporation. The RNA editing status was analyzed for precursor and spliced transcripts from the test construct. We found that only a restricted number of nucleotides in the vicinity of the target C residue were necessary for recognition by the editing machinery and that the nearest neighbor 3 residues were crucial for the editing process. We provide evidence that two functionally distinguishable sequences can be defined: the 16-nucleotide 5 region, which can be replaced with the same region from another editing site, and a 6-nucleotide 3 region specific to the editing site. The latter region may play a role in positioning the actual editing residue.RNA editing refers to a process whereby the genetic message is changed at single nucleotides in a very specific manner. This process involves a variety of genetic systems and occurs by different mechanisms (reference 6 and references therein). In trypanosome kinetoplasts, RNA editing proceeds by insertion and deletion of uridine nucleotides in mRNAs (2); the insertion of C residues has been described for Physarum polycephalum mitochondria, and the insertion of some G residues occurs in paramyxovirus (25,36). Another type of RNA editing is base conversion, occurring in mammalian nuclei (31) and plant organelles. C-to-U conversions have been described for higher plant mitochondria (9, 13, 16) and to a lesser extent for chloroplasts (18,21).RNA editing is a posttranscriptional event in plant organelles. It is essential in plant mitochondrion gene expression processes such as the maturation step of organellar transcripts (26,27) or the synthesis of functional proteins, since the nucleotide conversions usually alter the coding properties of the mRNA (1). The editing systems in higher plant organelles, mitochondria, and chloroplasts share many similar features, but promiscuous chloroplast sequences are not edited in mitochondria (39); conversely, a mitochondrial sequence carrying an editing site does not sustain editing when transcribed into chloroplasts (35). These results indicate that editing recognition signals are specific to each organelle. The sequences flanking target C residues lack any apparent conserved consensus elements at the primary or secondary structure level. An essential problem is to define the signals that determine the specific recognition of every editing site.A number of in vivo studies of transgenic chloroplasts have demonstrated that mRNA sequences flanking the editing site are involved in RNA editing (4, 5). RNA editing has been determined to proceed by deamination of the C residue in wheat (3) and pea (38). However, the molecular determinants for editing-site recognition have not yet been ...