2021
DOI: 10.3390/nano11071824
|View full text |Cite
|
Sign up to set email alerts
|

A Plasmonic Infrared Multiple-Channel Filter Based on Gold Composite Nanocavities Metasurface

Abstract: A plasmonic near-infrared multiple-channel filter is numerically and experimentally investigated based on a gold periodic composite nanocavities metasurface. By the interference among different excited plasmonic modes on the metasurface, the multipeak extraordinary optical transmission (EOT) phenomenon is induced and utilized to realize multiple-channel filtering. Investigated from the simulated transmission spectrum of the metasurface, the positions and intensity of transmission peaks are tuned by the geometr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(2 citation statements)
references
References 35 publications
0
2
0
Order By: Relevance
“…Fortunately, the emergence of metamaterial provides an appealing alternative to control electromagnetic wave manipulations properties [12][13][14][15][16][17], and the discovery of the AT phenomenon based on metamaterial was first experimentally demonstrated in the microwave region by Fedotov et al in 2006 [18]. Since then, various AT devices based on artificial structures have been proposed which use photonic crystals [19,20], subwavelength asymmetric gratings [21][22][23][24], chiral metamaterials [25][26][27] and metasurfaces [28][29][30], and the operation wavelengths have been covered from microwave to visible light [31][32][33].…”
Section: Introductionmentioning
confidence: 99%
“…Fortunately, the emergence of metamaterial provides an appealing alternative to control electromagnetic wave manipulations properties [12][13][14][15][16][17], and the discovery of the AT phenomenon based on metamaterial was first experimentally demonstrated in the microwave region by Fedotov et al in 2006 [18]. Since then, various AT devices based on artificial structures have been proposed which use photonic crystals [19,20], subwavelength asymmetric gratings [21][22][23][24], chiral metamaterials [25][26][27] and metasurfaces [28][29][30], and the operation wavelengths have been covered from microwave to visible light [31][32][33].…”
Section: Introductionmentioning
confidence: 99%
“…In recent years, there has been tremendous innovation in optics and photonics with the advent of the metasurface, a periodic arrangement structure of multiple units on a two-dimensional plane that can be used to tune electromagnetic waves [1,2]. Various metasurfaces have been designed on subwavelength dimension cells to modulate the phase, polarization mode, and propagation pattern of electromagnetic waves.…”
Section: Introductionmentioning
confidence: 99%