A bidirectional electromagnetically induced transparency (EIT) arising from coupling of magnetic dipole modes is demonstrated numerically and experimentally based on nanoscale a-Si cuboid-bar metasurface. Analyzed by the finite-difference time-domain (FDTD) Solutions, both the bright and dark magnetic dipole mode is excited in the cuboid, while only the dark magnetic dipole mode is excited in the bar. By breaking the symmetry of the cuboid-bar structure, the destructive interference between bright and dark magnetic dipole modes is induced, resulting in the bidirectional EIT phenomenon. The position and amplitude of simulated EIT peak is adjusted by the vertical spacing and horizontal spacing. The EIT metasurface was fabricated by Electron-Beam Lithography and deep silicon etching technique on the a-Si film deposited by Plasma-Enhanced Chemical Vapor Deposition. Measured by a convergent spectrometer, the fabricated sample achieved a bidirectional EIT peak with transmission up to 65% and 63% under forward and backward incidence, respectively. Due to the enhanced magnetic field induced by the magnetic dipole resonance, the fabricated bidirectional EIT metasurface provides a potential way for magnetic sensing and magnetic nonlinearity.
A plasmonic near-infrared multiple-channel filter is numerically and experimentally investigated based on a gold periodic composite nanocavities metasurface. By the interference among different excited plasmonic modes on the metasurface, the multipeak extraordinary optical transmission (EOT) phenomenon is induced and utilized to realize multiple-channel filtering. Investigated from the simulated transmission spectrum of the metasurface, the positions and intensity of transmission peaks are tuned by the geometrical parameters of the metasurface and environmental refractive index. The fabricated metasurface approached transmission peaks at 1128 nm, 1245 nm, and 1362 nm, functioning as a three-passbands filter. With advantages of brief single-layer fabrication and multi-frequency selectivity, the proposed plasmonic filter has potential possibilities of integration in nano-photonic switching, detecting and biological sensing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.