Background. The majority of mistakes students make while using “well-learned” decimal counting, can be attributed to their miscomprehension of the structure and arrangement of the “positional” numeral system. Digital support may merely serve an illustrative and training function, or it may provide the special environment for locating the problem of positional counting as a part of meaningful actions by the students. Following the Activity approach, we aimed to scaffold the students’ own learning actions, in such a way as to reveal the origin of the multi-digit number concept. Thus, we used counting in other-base systems as a way for students to reconsider the reasoning behind familiar operations in the most common base-ten system. Objective. The purpose of this paper is to present the approach to computer support which we have designed, based on our analysis of the activity content related to the multi-digit number concept, and to discuss some preliminary results of the first training series. Design. The approach to educational environment design developed within the Learning Activity theory defines the ways in which a computer becomes essential. The computer should provide a transparent interface which allows students to perform transformations with objects which will react accordingly. The additional opportunities to perform concept-mediated orientation procedures should also be scaffolded by digital means. For the purposes of our study, the computer-based educational module “Interstellar wanderers” was designed. Four groups of students from 2nd to 5th grade (8-12 years of age, 20 children in total) participated in the experimental computer-based lessons (over 30 hours); classroom observations, videotaped discussions, and logs of students’ individual work in the computer simulation were used for analysis. Results. The preliminary results of the experimental teaching showed that the computer support which we developed may scaffold students’ progress toward acquisition of the multi-digit number concept through a reflective re-thinking of the well-learned decimal system. Yet further research is needed to get a quantitative analysis of students’ performance. Conclusion. The general principles of computer support design based on the Activity approach in education (Galperin, Davydov, & Talyzina) demand a thorough analysis of the origin of the concept being studied, as well as the design of appropriate content and means of students’ actions and corresponding contexts and tasks. The digital means which we designed to support students’ learning activity, are in demand and bring promising results.